NOVEMBER 2000

For

U.S. Environmental Protection Agency Region 2 and U.S. Army Corps of Engineers Kansas City District

> Book 2 of 2 Tables, Figures and Plates

TAMS Consultants, Inc. Menzie-Cura & Associates, Inc.

FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E-REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBs REASSESSMENT RI/FS

CONTENTS

Volume 2E (Book 1 of 2)

		<u>I</u>	Page
TAR	LE OF (CONTENTS	i
		BLES	
		GURES	
		ATES	
		E SUMMARY	
1.0	INTR	ODUCTION	1
1.0	1.1	Purpose of Report	
	1.2	Site History	
	1.2	1.2.1 Summary of PCB Sources to the Upper and Lower Hudson River	
		1.2.2 Summary of Phase 2 Geochemical Analyses	
		1.2.2 Summary of Thase 2 Geochemical Analyses	
		1.2.3.1 PCBs in Sediment	
		1.2.3.1 PCBs in Sediment	
		1.2.3.3 PCBs in Fish	
	1.3	Data Sources	
	1.3	Technical Approach and Ecological Assessment in the Superfund Process	
	1.4	Report Organization	
2.0	DDOI	BLEM FORMULATION	15
2.0	2.1		
	2.1	Site Characterization	
		2.1.1 Habitat Descriptions	
		2.1.1.1 Upper Hudson River Habitats	
		2.1.1.2 Lower Hudson River Habitats	
		2.1.2 Hudson River Natural History	
		2.1.3 Threatened and Endangered Species	
		2.1.4 Significant Habitats	
	2.2	2.1.5 Human Use of the River	
	2.2	Contaminants of Concern	
	2.3	Conceptual Model	
		2.3.1 Exposure Pathways in the Hudson River Ecosystem	
		2.3.1.1 Processes That Govern PCB Distributions in the Environment	
		2.3.1.2 Biological Fate and Transport Processes	
		2.3.1.3 Spatial and Temporal Issues in Congener-specific Uptake	
		2.3.2 Ecosystems of the Hudson River	. 37

FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E-REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBs REASSESSMENT RI/FS

CONTENTS

Volume 2E (Book 1 of 2)

	`		<u> </u>	age
		2.3.3	Aquatic Exposure Pathways	
		2.3.4	Terrestrial Exposure Pathways	. 39
	2.4	Assess	sment Endpoints	. 40
	2.5	Measu	rement Endpoints	. 41
	2.6	Repres	sentative Receptors	
		2.6.1	Macroinvertebrate Communities	
		2.6.2	Fish Receptors	
		2.6.3	Avian Receptors	. 52
		2.6.4	Mammalian Receptors	. 53
3.0	EXPO	SURE .	ASSESSMENT	. 55
	3.1	Quant	ifying PCB Mixtures and TEQs	. 56
		3.1.1	Quantifying PCB Mixtures as Tri+ PCBs	. 58
		3.1.2	Quantifying Toxic Equivalencies (TEQ)	. 58
	3.2	Estima	ating Current and Future Exposures	. 61
		3.2.1	Upper Hudson River Models	
		3.2.2	Lower Hudson River Models	
			3.2.2.1 Use of the Farley Models	
			3.2.2.2 Estimation of Striped Bass Body Burdens in the Lower Hudson	
	3.3	Expos	ure Concentrations in Water and Sediments	
		3.3.1	Measured Concentrations in Water and Sediments	
		3.3.2	Modeled Concentrations in Water and Sediments	
		3.3.3	Estimating Future Baseline TEQ Concentrations	
	3.4		ure to Benthic Invertebrates	
		3.4.1	Observed Benthic Invertebrate Concentrations	
		3.4.2	Modeled Benthic Invertebrate Concentrations	
	3.5	-	ure to Fish	
		3.5.1		
		3.5.2	Modeled Fish Concentrations	
	3.6	_	ure to Avian Wildlife	
		3.6.1	Measured Concentrations in Birds	
		3.6.2	Avian Exposure Models	
			3.6.2.1 Surface Water Ingestion Pathway	
			3.6.2.2 Incidental Sediment Ingestion Pathway	
			3.6.2.3 Dietary Exposure Pathway	. 75

ii TAMS/MCA

FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E-REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBs REASSESSMENT RI/FS

CONTENTS

Volume 2E (Book 1 of 2)

VOIUII	ic 2L (I	JOOK 1 (<i>J</i> 1 2)	Page
			3.6.2.4 Behavioral and Temporal Modifying Factors Relating to	
			Exposure	
			3.6.2.5 Biomagnification Factors for Predicting Egg Concentrations .	79
		3.6.3	Exposure Estimates for Avian Wildlife on a Total (Tri+) PCB Basis .	
		3.6.4	Exposure Estimates for Avian Wildlife on a TEQ Basis	
	3.7	Expos	ure to Mammalian Wildlife	
		3.7.1	Observed Mammalian Concentrations	
		3.7.2	Mammalian Wildlife Exposure Models	
			3.7.2.1 Surface Water Ingestion Pathway	83
			3.7.2.2 Incidental Sediment Ingestion Pathway	83
			3.7.2.3 Dietary Exposure Pathway	84
			3.7.2.4 Behavioral and Temporal Modifying Factors Relating to	
			Exposure	87
		3.7.3	Exposure Estimates for Mammalian Wildlife on a Total (Tri+) PCB	
			Basis	87
		3.7.4	Exposure Estimates for Mammalian Wildlife on a TEQ Basis	88
	3.8	Uncer	tainty and Sensitivity in Exposure	89
	3.9	Exami	ination of Exposure Pathways Based on Congener Patterns	89
		3.9.1	Identifying Aroclor Patterns for Use in the Toxicity Assessment	92
		3.9.2	Determining the Relative Importance of Water, Sediment, and	
			Dietary Exposures	94
4.0	EFFE(CTS AS	SSESSMENT	97
	4.1		hlorinated Biphenyl Structure and Toxicity	
		4.1.1		
		4.1.2	Metabolic Activation and Toxicity of PCBs	98
		4.1.3	Estimating the Ecological Effects of PCBs	
	4.2	Select	ion of Measures of Effects	
		4.2.1	Methodology Used to Derive TRVs	. 103
			Selection of TRVs for Benthic Invertebrates	
		4.2.3	Selection of TRVs for Fish	. 106
			4.2.3.1 Pumpkinseed (Lepomis gibbosus)	. 107
			4.2.3.2 Spottail Shiner (Notropis hudsonius)	
			4.2.3.3 Brown Bullhead (<i>Ictalurus nebulosus</i>)	
			4.2.3.4 Yellow Perch (Perca flavescens)	

iii TAMS/MCA

FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E-REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBs REASSESSMENT RI/FS

CONTENTS

Volume 2E (Book 1 of 2)

, 010	(,20011		<u>Page</u>
			4.2.3.5 White Perch (Morone americana)	117
			4.2.3.6 Largemouth Bass (Micropterus salmoides)	
			4.2.3.7 Striped Bass (Morone saxatilis)	
		4.2.4	Selection of TRVs for Avian Receptors	
			4.2.4.1 Tree Swallow (Tachycineta bicolor)	
			4.2.4.2 Mallard (<i>Anas platyrhychos</i>)	
			4.2.4.3 Belted Kingfisher (<i>Ceryle alcyon</i>)	
			4.2.4.4 Great Blue Heron (Ardea herodias)	
			4.2.4.5 Bald Eagle (Haliaeetus leucocephalus)	
		4.2.5	Selection of TRVs for Mammalian Receptors	
			4.2.5.1 Little Brown Bat (Myotis lucifugus)	
			4.2.5.2 Raccoon (<i>Procyon lotor</i>)	
			4.2.5.3 Mink (<i>Mustela vison</i>)	
			4.2.5.4 River Otter (<i>Lutra canadensis</i>)	
	4.3	Dose-l	Response Functions from the Literature	
5.0	RISK		ACTERIZATION	155
	5.1		ation of Assessment Endpoint: Sustainability of a Benthic	
		Inverte	ebrate Community That Can Serve as a Food Source for Local Fish	
		for Lo	cal Fish and Wildlife	156
		5.1.1	Does the Benthic Community Structure Reflect the Influence	
			of PCBs?	156
			5.1.1.1 Measurement Endpoint: TI Pool (Upper Hudson River)	
			Benthic Invertebrate Community Analysis	156
			5.1.1.2 Measurement Endpoint: Lower Hudson Benthic Invertebrate	
			Community Analysis	158
		5.1.2	Do Measured and Modeled Sediment Concentrations Exceed	
			Guidelines?	159
			5.1.2.1 Measurement Endpoint: Comparison of Sediment PCB	
			Concentrations to Guidelines	159
	5.2	Evalua	ation of Assessment Endpoint: Sustainability (i.e., Survival, Growth,	
		and Re	eproduction) of Local Fish Populations	161
		5.2.1	Do Measured and/or Modeled Total and TEQ-Based PCB Body	
			Burdens in Local Fish Species Exceed Benchmarks for Adverse	
			Effects on Fish Reproduction?	161
			-	

iV TAMS/MCA

CONTENTS

Volume 2E (Book 1 of 2)

<u>Page</u>	
5.2.1.1 Measurement Endpoint: Comparison of Measured and Modeled Total PCB Fish Body Burdens to Toxicity Reference Values for Forage Fish	5.2.1.1
5.2.1.2 Measurement Endpoint: Comparison of Modeled TEQ Fish Body Burdens to Toxicity Reference Values for Forage Fish 161	5.2.1.2
5.2.1.3 Measurement Endpoint: Comparison of Modeled Total PCB Fish Body Burdens to Toxicity Reference Values for Brown Bullhead	5.2.1.3
5.2.1.4 Measurement Endpoint: Comparison of Modeled TEQ Basis Fish Body Burdens to Toxicity Reference Values for Brown	5.2.1.4
Bullhead	5.2.1.5
Values for Largemouth Bass and Brown Bullhead 162 5.2.1.6 Measurement Endpoint: Comparison of Measured Total and TEQ-based PCB Fish Body Burdens to Toxicity Reference Values for White and Yellow Perch Based on NYSDEC	5.2.1.6
Data	5.2.1.7
5.2.1.8 Measurement Endpoint: Comparison of Modeled TEQ Basis Body Burdens to Toxicity Reference Values for White and Yellow Perch for the Period 1993 - 2018	5.2.1.8
5.2.1.9 Measurement Endpoint: Comparison of Modeled Tri+ PCB Fish Body Burdens to Toxicity Reference Values for Large- mouth Bass for the Period 1993 - 2018	5.2.1.9
5.2.1.10 Measurement Endpoint: Comparison of Modeled TEQ Based Fish Body Burdens to Toxicity Reference Values for Largemouth Bass for the Period 1993 - 2018	5.2.1.1
5.2.1.11 Measurement Endpoint: Comparison of Observed Striped Bass Concentrations to Toxicity Reference Values on a Total (Tri+) and TEQ PCB Basis	5.2.1.1
5.2.1.12 Measurement Endpoint: Comparison of Modeled Striped Bass Concentrations to Toxicity Reference Values on a Total (Tri+) and TEO PCB Basis	5.2.1.1

TAMS/MCA

CONTENTS

Volume 2E (Book 1 of 2)

`		,	Pag	<u> 3e</u>
	5.2.2		sured and Modeled PCB Water Concentrations Exceed riate Criteria and/or Guidelines for the Protection of	
			2?	55
			Measurement Endpoint: Comparison of Water Column	IJ
		3.2.2.1	Concentrations of PCBs to Criteria	55
	5.2.3	Do Mea	sured and Modeled Sediment Concentrations Exceed	
	0.2.0		riate Criteria and/or Guidelines for the Protection of Aquatic	
			Wildlife?	55
			Measurement Endpoint: Comparison of Sediment PCB	
			Concentrations to Guidelines	55
	5.2.4	What D	o the Available Field-Based Observations Suggest About	
			th of Local Fish Populations?	
		5.2.4.1	Measurement Endpoint: Evidence from Field Studies 16	6
5.3	Evalua	ation of A	ssessment Endpoint: Sustainability (i.e., Survival, Growth,	
			on) of Hudson River Insectivorous Birds (as Representated	
	•		allow)	8
	5.3.1		sured and Modeled Total and TEQ-Based PCB Dietary Doses	
			tivorous Birds and Egg Concentrations Exceed Benchmarks	
			erse Effects on Reproduction?	8
		5.3.1.1	Measurement Endpoint: Modeled Dietary Doses of Total	
			PCBs (i.e., Tri+) to Insectivorous Birds (Tree Swallow)	
		7010	and Predicted Egg Concentrations Using 1993 Data 16	18
		5.3.1.2	Measurement Endpoint: Modeled Dietary Doses on a Tri+	
			PCB Basis to Insectivorous Birds (Tree Swallow) for the	-0
		5212	Period 1993 - 2018	19
		5.3.1.3	Measurement Endpoint: Predicted Egg Concentrations on	
			a Tri+ PCB Basis to Insectivorous Birds (Tree Swallow) for the Period 1993 - 2018	<u>.</u>
		5.3.1.4	Measurement Endpoint: Modeled Dietary Doses of PCBs	19
		3.3.1.4	and Predicted Egg Concentrations Expressed as TEQ to	
			Insectivorous Birds (Tree Swallow) Based on 1993 Data 16	50
		5.3.1.5	Measurement Endpoint: Modeled Dietary Doses of	ワ
		5.5.1.5	PCBs Expressed as TEQ to Insectivorous Birds (Tree	
			Swallow) for the Period 1993 - 2018	50
			5 wanow, for the remod 1775 - 2010	ני

Vİ TAMS/MCA

CONTENTS

Volume 2E (Book 1 of 2)

			Page
		5.3.1.6	Measurement Endpoint: Predicted Egg Concentrations Expressed as TEQ to Insectivorous Birds (Tree Swallow) for the Period 1993 - 2018
	5.3.2	Do Mea	sured and Modeled PCB Water Concentrations Exceed
	0.0.2		and/or Guidelines for the Protection of Insectivorous Birds/
			e?
			Measurement Endpoint: Comparison of Measured and
			Modeled Water Concentrations to Criteria and/or
			Guidelines
	5.3.3	What D	o the Available Field-Based Observations Suggest About the
		Health o	of Local Insectivorous Bird Populations?
		5.3.3.1	Measurement Endpoint: Observational Studies 170
5.4	Evalu	ation of A	ssessment Endpoint: Sustainability (i.e., Survival, Growth
	and R	eproduction	on) of Local Waterfowl (as represented by Mallards) 171
	5.4.1		sured and Modeled Total and TEQ-Based PCB Dietary Doses
			fowl and Egg Concentrations Exceed Benchmarks for
			Effects on Reproduction?
			Measurement Endpoint: Modeled Dietary Doses of PCBs
			and Predicted Egg Concentrations as Total PCBs to Water-
			fowl (Mallard Ducks) Based on 1993 Data
			Measurement Endpoint: Modeled Dietary Doses of Tri+
			PCBs to Waterfowl (Mallard Ducks) for the Period
			1993 - 2018
			Measurement Endpoint: Predicted Egg Concentrations of Tri+
			PCBs to Waterfowl (Mallard Ducks) for the Period
			1993 - 2018
			Measurement Endpoint: Modeled Dietary Doses and Predicted accentrations of TEQ-Based PCBs to Waterfowl
			(Mallard Ducks) Using 1993 Data
			Measurement Endpoint: Modeled Dietary Doses of TEQ-Based
			PCBs to Waterfowl (Mallard Ducks) for the Period
			1993 - 2018
		-	1775 2010

Vii TAMS/MCA

CONTENTS

Volume 2E (Book 1 of 2)

	<u>Page</u>
	5.4.1.6 Measurement Endpoint: Predicted Egg Concentrations of TEQ-Based PCBs to Waterfowl (Mallard Ducks) for the Period 1993 - 2018
5.4	 4.2 Do Measured and Modeled Water Concentrations Exceed Criteria and/or Guidelines for the Protection of Waterfowl/Wildlife? 172 5.4.2.1 Measurement Endpoint: Comparison of Measured and Modeled Water Concentrations to Criteria and/or
5.4	Guidelines
	5.4.3.1 Measurement Endpoint: Observational Studies
By	 Id Reproduction) of Hudson River Piscivorous Bird Species (as represented by the Belted Kingfisher, Great Blue Heron, and Bald Eagle)
	Adverse Effects on Reproduction?
	5.5.1.1 Measurement Endpoint: Modeled Dietary Doses of PCBs and Predicted Egg Concentrations for Total PCBs for Piscivorous Birds (Belted Kingfisher, Great Blue Heron, Bald Eagle) Using 1993 Data
	5.5.1.2 Measurement Endpoint: Modeled Dietary Doses of Total (Tri+) PCBs to Piscivorous Birds (Belted Kingfisher, Great Blue Heron, Bald Eagle) for the Period 1993-2018
	5.5.1.3 Measurement Endpoint: Predicted Egg Concentrations Expressed as Tri+ to Piscivorous Birds (Belted Kingfisher, Great Blue Heron, Bald Eagle) for the Period 1993 - 2018 174
	5.5.1.4 Measurement Endpoint: Modeled Dietary Doses and Predicted Egg Concentrations of PCBs on a TEQ Basis to Piscivorous Birds (Belted Kingfisher, Great Blue Heron, Bald Eagle) Using 1993 Data
	5.5.1.5 Measurement Endpoint: Modeled Dietary Doses of PCBs Expressed as TEQs to Piscivorous Birds (Belted Kingfisher, Great Blue Heron, Bald Eagle) for the Period 1993 - 2018 176

Viii TAMS/MCA

CONTENTS

Volume 2E (Book 1 of 2)

		Page
		5.5.1.6 Measurement Endpoint: Predicted Egg Concentrations of PCBs Expressed as TEQs to Piscivorous Birds (Belted Kingfisher, Great Blue Heron, Bald Eagle) for the Period 1993 - 2018 176
5	5.5.2	Do Measured and Modeled Water Concentrations Exceed Criteria And/or Guidelines for the Protection of Wildlife?
5	5.5.3	Modeled Water Concentrations to Criteria and/or Guidelines 177 What Do the Available Field-Based Observations Suggest About the Health of Local Piscivorous Bird Populations?
5.6 E	Evalua	ation of Assessment Endpoint: Sustainability (i.e., Survival and
		duction) of Local Insectivorous Mammals (as Represented by the
I	Little 1	Brown Bat)
5	5.6.1	Do Measured and Modeled Total and TEQ-Based PCB Dietary
		Doses to Insectivorous Mammalian Receptors Exceed Benchmarks
		for Adverse Effects on Reproduction?
		5.6.1.1 Measurement Endpoint: Modeled Dietary Doses of
		Tri+ to Insectivorous Mammalian Receptors (Little Brown Bat) Using 1993 Data
		5.6.1.2 Measurement Endpoint: Modeled Dietary Doses of Tri+
		to Insectivorous Mammalian Receptors (Little Brown Bat)
		for the Period 1993 - 2018
		5.6.1.3 Measurement Endpoint: Modeled Dietary Doses on a TEQ
		Basis to Insectivorous Mammalian Receptors (Little Brown Bat) Using 1993 Data
		5.6.1.4 Measurement Endpoint: Modeled Dietary Doses on a TEQ
		Basis to Insectivorous Mammalian Receptors (Little Brown Bat)
		for the Period 1993 - 2018
5	5.6.2	Do Measured and Modeled Water Concentrations Exceed Criteria
		and/or Guidelines for the Protection of Wildlife?
		5.6.2.1 Measurement Endpoint: Comparison of Measured and Modeled Water Concentrations to Criteria and/or Guide-
		lines
5	5.6.3	What Do the Available Field-Based Observations Suggest About the
_		Health of Local Insectivorous Mammal Populations?

iX TAMS/MCA

CONTENTS

Volume 2E (Book 1 of 2)

	<u>Page</u>
	5.6.3.1 Measurement Endpoint: Observational Studies
5.7	Evaluation of Assessment Endpoint: Sustainability (i.e., Survival and Repro-
	duction) of Local Omnivorous Mammals (as Represented by the Raccoon) 181
	5.7.1 Do Measured and Modeled Total and TEQ-Based PCB Dietary
	Doses to Omnivorous Mammalian Receptors Exceed Benchmarks for
	Adverse Effects on Reproduction?
	5.7.1.1 Measurement Endpoint: Modeled Dietary Doses of Tri+ to
	Omnivorous Mammalian Receptors (Raccoon) using 1993
	Data
	5.7.1.2 Measurement Endpoint: Modeled Dietary Doses of Tri+ to
	Omnivorous Mammalian Receptors (Raccoon) for the Period
	1993 - 2018
	5.7.1.3 Measurement Endpoint: Modeled Dietary Doses on a TEQ
	Basis to Omnivorous Mammalian Receptors (Raccoon) using
	1993 Data
	5.7.1.4 Measurement Endpoint: Modeled Dietary Doses on a TEQ
	Basis to Omnivorous Mammalian Receptors (Raccoon) for the
	Period 1993 - 2018
	5.7.2 Do Measured and Modeled Water Concentrations Exceed Criteria
	and/or Guidelines for the Protection of Omnivorous Mammals/
	Wildlife?
	5.7.2.1 Measurement Endpoint: Comparison of Measured and
	Modeled Water Concentrations to Criteria and/or Guide-
	lines
	5.7.3 What Do the Available Field-Based Observations Suggest About the
	Health of Local Omnivorous Mammal Populations?
5.8	Evaluation of Assessment Endpoint: Sustainability (<i>i.e.</i> , Survival and Repro-
5.0	duction) of Local Piscivorous Mammals (as Represented by the Mink and
	River Otter)
	5.8.1 Measurement Endpoint: Measured Total PCB Concentrations in the
	Liver of Piscivorous Mamalian Receptors (Mink, River Otter) 183
	5.8.1.1 Measurement Endpoint: Modeled Dietary Doses of Tri+ to
	Piscivorous Mammalian Receptors (Mink, River Otter) using
	1993 Data

X TAMS/MCA

CONTENTS

Volume 2E (Book 1 of 2)

		<u>Page</u>
		5.8.1.2 Measurement Endpoint: Modeled Dietary Doses of Tri+ to
		Piscivorous Mammalian Receptors (Mink, River Otter)
		for the Period 1993 - 2018
		5.8.1.3 Measurement Endpoint: Modeled Dietary Doses on a TEQ
		Basis to Piscivorous Mammalian Receptors (Mink, River Otter)
		Using 1993 Data
		5.8.1.4 Measurement Endpoint: Modeled Dietary Doses on a TEQ
		Basis to Piscivorous Mammalian Receptors (Mink, River
		Otter) for the Period 1993 - 2018
		5.8.2 Do Measured and Modeled Water Concentrations Exceed Criteria
		and/or Guidelines for the Protection of Wildlife?
		5.8.2.1 Measurement Endpoint: Comparison of Measured and
		Modeled Water Concentrations to Criteria and/or Guidelines
		for the Protection of Wildlife
		5.8.3 What Do the Available Field-Based Observations Suggest About the
		Health of Local Mammalian Populations?
		5.8.3.1 Measurement Endpoint: Observational Studies
	5.9	Results of the Probabilistic Dose-Response Analysis
		5.9.1 Belted Kingfisher
		5.9.2 Bald Eagle
		5.9.3 Mink
		5.9.4 River Otter
6.0	UNC	ERTAINTY ANALYSIS189
	6.1	Sampling Error and Representativeness
	6.2	Analysis and Quantitation Uncertainties
		6.2.1 TEQ Quantitation
	6.3	Conceptual Model Uncertainties
	6.4	Toxicological Uncertainties
	6.5	Exposure and Modeling Uncertainties
		6.5.1 Natural Variation and Parameter Error
		6.5.1.1 Food Chain Exposures
		6.5.2 Sensitivity and Uncertainty Analysis for Risk Models
		6.5.3 Model Error
		6.5.3.1 Uncertainty in FISHRAND Model Predictions

Xİ TAMS/MCA

CONTENTS

Volume 2E (Book 1 of 2)

`			<u>Page</u>
	6.6	6.5.3.2 Uncertainty in the Farley Models	
7.0	CON	CLUSIONS	207
	7.1	Assessment Endpoint: Sustainability of a Benthic Invertebrate Community, Which Serves as a Food Source for Local Fish and Wildlife	207
	7.2	Assessment Endpoint: Sustainability (<i>i.e.</i> , Survival, Growth, and Reproduction) of Local Fish Populations	208
	7.3	Assessment Endpoint: Sustainability (<i>i.e.</i> , Survival, Growth, and Reproduction) of Local Insectivorous Birds	
	7.4	Assessment Endpoint: Sustainability (<i>i.e.</i> , Survival, Growth, and Reproduction) of Local Waterfowl	
	7.5	Assessment Endpoint: Sustainability (<i>i.e.</i> , Survival, Growth and Reproduction) of Hudson River Piscivorous Bird Species	
	7.6	Assessment Endpoint: Sustainability (<i>i.e.</i> , Survival, Growth and Reproduction) of Local Insectivorous Mammals	
	7.7	Assessment Endpoint: Sustainability (i.e., Survival, Growth and Repro-	
	7.8	duction) of Local Omnivorous Mammals	
	7.9	duction) of Local Piscivorous Mammals	
DEEE	ERENC	ES	227

XII TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

LIST OF TABLES:

- 1-1 Average Fish Tissue Concentrations from 1998 NYSDEC Sampling in the Upper Hudson River, Reported as mg/kg Wet Weight and Converted to a Consistent Estimator of Tri+ PCBs
- 1-2 Average Fish Tissue Concentrations from 1998 NYSDEC Sampling in the Upper Hudson River, Reported as mg/kg-Lipid and Converted to a Consistent Estimator of Tri+ PCBs
- 1-3 Half-Life Comparison of Data Lipid-Based Annual Average PCB Concentrations in Fish
- 2-1 Hudson River Fishes
- 2-2 Typical Fish Aggregations in the Upper Hudson River Estuary (RM 101-153)
- 2-3 Amphibians Potentially Found Along the Hudson River
- 2-4 Reptiles Potentially Found Along the Hudson River
- 2-5 Breeding Birds of the Hudson River
- 2-6 Mammals Potentially Found Along the Hudson River
- 2-7 NYS Rare and Listed Species and Habitats Occurring in the Vicinity of the Hudson River
- 2-8 Hudson River Significant Habitats
- 2-9 Hudson River Significant Habitat Species and Resources
- 2-10 Assessment and Measurement Endpoints
- 2-11 Hudson River Receptor Species
- 3-1 Average Proportion of Fish-Based TEQ Congeners Using USEPA 1993 Dataset and USFWS 1995

 Dataset
- 3-2 Fraction of Tri+ Chlorinated Congeners Expressed as Toxic Equivalencies (TEQ)
- 3-3 Summary of Conversion for the Di though Hexa Homologues used in the Farley Model (table 3-1 of ERA addendum)
- 3-3a Predicted Annual Tri+ PCBs Loads To The Lower Hudson River
- 3-4 Ratio of Striped Bass to Largemouth Bass Concentrations (table 3-2 of ERA addendum)
- 3-5 Whole Water Concentrations Based on USEPA Phase 2 Dataset
- 3-6 Dry Weight Sediment Concentrations Based on USEPA Phase 2 Dataset
- 3-7 Summary of Tri+ Whole Water Concentrations from the HUDTOX (Upper River) and Farley (Lower River) Models and TEQ-Based Predictions for 1993 2018
- 3-8 Summary of Tri+ Sediment Concentrations from the HUDTOX (Upper River) and Farley (Lower River) Models and TEQ-Based Predictions for 1993 2018
- 3-9 Summary of Organic Carbon Normalized Tri+ Sediment Concentrations from the HUDTOX (Upper River) and Farley (Lower River) Models and TEQ-Based Predictions for 1993 2018
- 3-10 Benthic Invertebrate Concentrations Based on USEPA Phase 2 Dataset

XIII TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 3-11 Summary of Tri+ Benthic Invertebrate Concentrations from the FISHRAND Model and TEQ-Based Predictions for 1993 2018
- 3-12 Forage Fish Concentrations Based on USEPA Phase 2 Dataset
- 3-13 Observed Concentrations in PPM for Fish Species for River Miles 113, 152, 168 and 189 from NYSDEC Dataset
- 3-14 Observed Striped Bass Concentrations from NYSDEC for the Hudson River
- 3-15 Largemouth Bass Predicted Tri+ Concentrations for 1993 2018
- 3-16 Brown Bullhead Predicted Tri+ Concentrations for 1993 2018
- 3-17 White Perch Predicted Tri+ Concentrations for 1993 2018
- 3-18 Yellow Perch Predicted Tri+ Concentrations for 1993 2018
- 3-19 Striped Bass Predicted Tri+ Concentrations for 1993 2018
- 3-20a Observed Avian Total PCB Concentrations
- 3-20b Observed Mammalian Total PCB Concentrations
- 3-21 Exposure Parameters for the Tree Swallow (*Tachycineta bicolor*)
- 3-22 Exposure Parameters for the Mallard (*Anas platyrhynchos*)
- 3-23 Exposure Parameters for the Belted Kingfisher (*Ceryle alcyon*)
- 3-24 Exposure Parameters for Great Blue Heron (*Ardea herodias*)
- 3-25 Exposure Parameters for the Bald Eagle (*Haliaeetus leucocephalus*)
- 3-26 Biomagnification Factors Fish to Bird Egg from Scientific Literature
- 3-26a Ratio of Egg And Chick To Insect and Odonata from Hudson River USFWS Data
- 3-27 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Tree Swallow Based on 1993 Data Using Sum of Tri+ Congeners
- 3-28 Summary of ADD_{95%UCL} and Egg Concentrations for Female Tree Swallow Based on 1993 Data Using Sum of Tri+ Congeners
- 3-29 Summary of Upper River $ADD_{EXPECTED}$ and Egg Concentrations for Female Tree Swallow Based on Tri+ Congeners for Period 1993 2018
- 3-30 Summary of Lower River ADD_{EXPECTED} and Egg Concentrations for Female Tree Swallow Based on Tri+ Congeners for Period 1993 2018
- 3-31 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Mallard Based on 1993 Data Using Sum of Tri+ Congeners
- 3-32 Summary of $ADD_{95\%UCL}$ and Egg Concentrations for Female Mallard Based on 1993 Data Using Sum of Tri+ Congeners
- 3-33 Summary of Upper River ADD_{EXPECTED} and Egg Concentrations for Female Mallard Based on Tri+ Congeners for Period 1993 - 2018
- 3-34 Summary of Lower River ADD_{EXPECTED} and Egg Concentrations for Female Mallard Based on Tri+ Congeners for Period 1993 - 2018

XİV TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 3-35 Summary of Upper River ADD_{EXPECTED} and Egg Concentrations for Female Belted Kingfisher Based on 1993 Data Using Sum of Tri+ Congeners
- 3-36 Summary of $ADD_{95\%UCL}$ and Egg Concentrations for Female Belted Kingfisher Based on 1993 Data Using Sum of Tri+ Congeners
- 3-37 Summary of Upper River $ADD_{EXPECTED}$ and Egg Concentrations for Female Belted Kingfisher Based on Tri+ Congeners for Period 1993 2018
- 3-38 Summary of Lower River $ADD_{EXPECTED}$ and Egg Concentrations for Female Belted Kingfisher Based on Tri+ Congeners for Period 1993 2018
- 3-39 Summary of Upper River ADD_{EXPECTED} and Egg Concentrations for Female Great Blue Heron Based on 1993 Data Using Sum of Tri+ Congeners
- 3-40 Summary of ADD_{95%UCL} and Egg Concentrations for Female Great Blue Heron Based on 1993 Data Using Sum of Tri+ Congeners
- 3-41 Summary of Upper River $ADD_{EXPECTED}$ and Egg Concentrations for Female Great Blue Heron Based on Tri+ Congeners for Period 1993 2018
- 3-42 Summary of Lower River ADD_{EXPECTED} and Egg Concentrations for Female Great Blue Heron Based on Tri+ Congeners for Period 1993 2018
- 3-43 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Eagle Based on 1993 Data Using Sum of Tri+ Congeners
- 3-44 Summary of $ADD_{95\%UCL}$ and Egg Concentrations for Female Eagle Based on 1993 Data Using Sum of Tri+ Congeners
- 3-45 Summary of Upper River $ADD_{EXPECTED}$ and Egg Concentrations for Female Eagle Based on Tri+Congeners for Period 1993 2018
- 3-46 Summary of Lower River $ADD_{EXPECTED}$ and Egg Concentrations for Female Eagle Based on Tri+Congeners for Period 1993 2018
- 3-47 Summary of $ADD_{EXPECTED}$ and Egg Concentrations for Female Tree Swallow Based on 1993 Data on TEQ Basis
- 3-48 Summary of ADD_{95%UCL} and Egg Concentrations for Female Tree Swallow Based on 1993 Data on TEQ Basis
- 3-49 Summary of Upper River $ADD_{EXPECTED}$ and Egg Concentrations for Female Tree Swallow for the Period 1993 2018 on TEQ Basis
- 3-50 Summary of Lower River $ADD_{EXPECTED}$ and Egg Concentrations for Female Tree Swallow for the Period 1993 2018 on TEQ Basis
- 3-51 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Mallard Based on 1993 Data on a TEO Basis
- 3-52 Summary of $ADD_{95\%UCL}$ and Egg Concentrations for Female Mallard Based on 1993 Data on a TEQ Basis

XV TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 3-53 Summary of Upper River $ADD_{EXPECTED}$ and Egg Concentrations for Female Mallard on a TEQ Basis for Period 1993 2018
- 3-54 Summary of Lower River $ADD_{EXPECTED}$ and Egg Concentrations for Female Mallard on a TEQ Basis for Period 1993 2018
- 3-55 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Belted Kingfisher Based on 1993 Data on TEQ Basis
- 3-56 Summary of $ADD_{95\%UCL}$ and Egg Concentrations for Female Belted Kingfisher Based on 1993 Data on TEQ Basis
- 3-57 Summary of Upper River $ADD_{EXPECTED}$ and Egg Concentrations for Female Belted Kingfisher for the Period 1993 2018 on TEQ Basis
- 3-58 Summary of Lower River ADD_{EXPECTED} and Egg Concentrations for Female Belted Kingfisher for the Period 1993 2018 on TEQ Basis
- 3-59 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Great Blue Heron Based on 1993 Data on TEQ Basis
- 3-60 Summary of ADD_{95%UCL} and Egg Concentrations for Female Great Blue Heron Based on 1993 Data on TEQ Basis
- 3-61 Summary of Upper River $ADD_{EXPECTED}$ and Egg Concentrations for Female Great Blue Heron for the Period 1993 2018 on TEQ Basis
- 3-62 Summary of Lower River $ADD_{EXPECTED}$ and Egg Concentrations for Female Great Blue Heron for the Period 1993 2018 on TEQ Basis
- 3-63 Summary of ADD_{EXPECTED} and Egg Concentrations for Female Eagle Based on 1993 Data on TEQ Basis
- 3-64 Summary of $ADD_{95\%UCL}$ and Egg Concentrations for Female Eagle Based on 1993 Data on TEQ Basis
- 3-65 Summary of Upper River $ADD_{EXPECTED}$ and Egg Concentrations for Female Eagle for the Period 1993 2018 on TEQ Basis
- 3-66 Summary of Lower River ADD_{EXPECTED} and Egg Concentrations for Female Eagle for the Period 1993 2018 on TEQ Basis
- 3-67 Exposure Parameters for Little Brown Bat (*Myotis lucifugus*)
- 3-68 Exposure Parameters for Raccoon (Proycon lotor) use updated addendum table
- 3-69 Exposure Parameters for Mink (*Mustela vison*)
- 3-70 Exposure Parameters for River Otter (*Lutra canadensis*)
- 3-71 Summary of ADD_{EXPECTED} for Female Bat Using 1993 Data Based on Tri+ Congeners
- 3-72 Summary of $ADD_{95\%UCL}$ for Female Bat Using 1993 Data Based on Tri+ Congeners
- 3-73 Summary of Upper River $ADD_{EXPECTED}$ for Female Bat Based on Tri+ Predictions for the Period 1993 2018

XVİ TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 3-74 Summary of Lower River $ADD_{EXPECTED}$ for Female Bat Based on Tri+ Predictions for the Period 1993 2018
- 3-75 Summary of ADD_{EXPECTED} for Female Raccoon Using 1993 Data Based on Tri+ Congeners
- 3-76 Summary of ADD_{95%UCL} for Female Raccoon Using 1993 Data Based on Tri+ Congeners
- 3-77 Summary of Upper River $ADD_{EXPECTED}$ for Female Raccoon Based on Tri+ Predictions for the Period 1993 2018
- 3-78 Summary of Lower River $ADD_{EXPECTED}$ for Female Raccoon Based on Tri+ Predictions for the Period 1993 2018
- 3-79 Summary of ADD_{EXPECTED} for Female Mink Using 1993 Data Based on Tri+ Congeners
- 3-80 Summary of ADD_{95%UCL} for Female Mink Using 1993 Data Based on Tri+ Congeners
- 3-81 Summary of Upper River $ADD_{EXPECTED}$ for Female Mink Based on Tri+ Predictions for the Period 1993 2018
- 3-82 Summary of Lower River ADD_{EXPECTED} for Female Mink Based on Tri+ Predictions for the Period 1993 2018
- 3-83 Summary of ADD_{EXPECTED} for Female Otter Using 1993 Data Based on Tri+ Congeners
- 3-84 Summary of ADD_{95%UCL} for Female Otter Using 1993 Data Based on Tri+ Congeners
- 3-85 Summary of Upper River $ADD_{EXPECTED}$ for Female Otter Based on Tri+ Predictions for the Period 1993 2018
- 3-86 Summary of Lower River $ADD_{EXPECTED}$ for Female Otter Based on Tri+ Predictions for the Period 1993 2018
- 3-87 Summary of ADD_{EXPECTED} for Female Bat Using 1993 Data on a TEQ Basis
- 3-88 Summary of ADD_{95%LICL} for Female Bat Using 1993 Data on a TEQ Basis
- 3-89 Summary of Upper River ADD_{EXPECTED} for Female Bat on a TEQ Basis for the Period 1993 2018
- 3-90 Summary of Lower River ADD_{EXPECTED} for Female Bat on a TEQ Basis for the Period 1993 2018
- 3-91 Summary of ADD_{EXPECTED} for Female Raccoon Using 1993 Data on a TEQ Basis
- 3-92 Summary of ADD_{95%UCL} for Female Raccoon Using 1993 Data on a TEQ Basis
- 3-93 Summary of Upper River ADD_{EXPECTED} for Female Raccoon on a TEQ Basis for the Period 1993 2018
- 3-94 Summary of Lower River ADD_{EXPECTED} for Female Raccoon on a TEQ Basis for the Period 1993 2018
- 3-95 Summary of ADD_{EXPECTED} for Female Mink Using 1993 Data on a TEQ Basis
- 3-96 Summary of ADD_{95%UCL} for Female Mink Using 1993 Data on a TEQ Basis
- 3-97 Summary of Upper River ADD_{EXPECTED} for Female Mink on a TEQ Basis for the Period 1993 2018
- 3-98 Summary of Lower River ADD_{EXPECTED} for Female Mink on a TEQ Basis for the Period 1993 2018
- 3-99 Summary of ADD_{EXPECTED} for Female Otter Using 1993 Data on a TEQ Basis
- 3-100 Summary of ADD_{95%UCL} for Female Otter Using 1993 Data on a TEQ Basis
- 3-101 Summary of Upper River ADD_{EXPECTED} for Female Otter on a TEQ Basis for the Period 1993 2018

XVII TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 3-102 Summary of Lower River ADD_{EXPECTED} for Female Otter on a TEQ Basis for the Period 1993 2018
- 3-103 Summary of Distributions and Distribution Parameters
- 4-1 Common Effects of PCB Exposure in Animals
- 4-2 World-Health Organization for Toxic Equivalency Factors (TEFs) for Humans, Mammals, Fish, and Birds
- 4-3 Selected Sediment Screening Guidelines: PCBs
- 4-4 Toxicity Endpoints for Benthic Invertebrates Effective Concentrations of Total PCBs, Aroclors and Dioxin Toxic Equivalents (TEQs)
- 4-5 Toxicity Endpoints for Fish Laboratory Studies Effective Concentrations of Total PCBs and Aroclors
- 4-6 Toxicity Endpoints for Fish Field Studies Effective Concentrations of Total PCBs and Aroclors
- 4-7 Toxicity Endpoints for Fish Laboratory Studies Effective Concentrations of Dioxin Toxic Equivalents (TEQs)
- 4-8 Toxicity Endpoints for Fish Field Studies Effective Concentrations of Dioxin Toxic Equivalents (TEQs)
- 4-9 Toxicity Endpoints for Birds Laboratory Studies Effective Dietary Doses of Total PCBs and Aroclors
- 4-10 Toxicity Endpoints for Birds Field Studies Effective Dietary Doses of Total PCBs and Aroclors
- 4-11 Toxicity Endpoints for Bird s Laboratory Studies Effective Dietary Doses of Dioxin Toxic Equivalents (TEQs)
- 4-12 Toxicity Endpoints for Birds Field Studies Effective Dietary Doses of Dioxin Toxic Equivalents (TEOs)
- 4-13 Toxicity Endpoints for Bird Eggs Laboratory Studies Effective Concentrations of Total PCBs and Aroclors
- 4-14 Toxicity Endpoints for Bird Eggs Field Studies Effective Concentrations of Total PCBs and Aroclors
- 4-15 Toxicity Endpoints for Bird Eggs Laboratory Studies Effective Concentrations of Dioxin Toxic Equivalents (TEQs)
- 4-16 Toxicity Endpoints for Bird Eggs Field Studies Effective Concentrations of Dioxin Toxic Equivalents (TEQs)
- 4-17 Toxicity Endpoints for Other Mammals Laboratory Studies Effective Dietary Doses of Total PCBs and Aroclors
- 4-18 Toxicity Endpoints for Other Mammals Laboratory Studies Effective Dietary Doses of Dioxin Toxic Equivalents (TEQs)
- 4-19 Toxicity Endpoints for Mink Laboratory Studies Effective Dietary Doses of Total PCBs and Aroclors

XVIII TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 4-20 Toxicity Endpoints for Mink Field Studies Effective Dietary Doses of Total PCBs and Aroclors
- 4-21 Toxicity Endpoints for Mink Laboratory Studies Effective Dietary Doses of Dioxin Toxic Equivalents (TEQs)
- 4-22 Toxicity Endpoints for Mink Field Studies Effective Dietary Doses of Dioxin Toxic Equivalents (TEQs)
- 4-23 Taxonomy of Studied Organisms
- 4-24 Standard Animal Body Weights and Food Intake Rates
- 4-25a Toxicity Reference Values for Fish Dietary Doses and Egg Concentrations of Total PCBs and Dioxin Toxic Equivalents (TEQs) Without Uncertainty Factors
- 4-25b Toxicity Reference Values for Fish Dietary Doses and Egg Concentrations of Total PCBs and Dioxin Toxic Equivalents (TEQs) With Uncertainty Factors
- 4-26a Toxicity Reference Values for Birds Dietary Doses and Egg Concentrations of Total PCBs and Dioxin Toxic Equivalents (TEQs) Without Uncertainty Factors
- 4-26b Toxicity Reference Values for Birds Dietary Doses and Egg Concentrations of Total PCBs and Dioxin Toxic Equivalents (TEQs) With Uncertainty Factors
- 4-27a Toxicity Reference Values for Mammals Dietary Doses of Total PCBs and Dioxin Toxic Equivalents (TEQs) Without Uncertainty Factors
- 4-27b Toxicity Reference Values for Mammals Dietary Doses of Total PCBs and Dioxin Toxic Equivalents (TEQs) With Uncertainty Factors
- 5-1 Benthic Invertebrates Collected at TI Pool Stations
- 5-2 Relative Abundance of Five Dominant Taxonomic Groups at TI Stations
- 5-3 Summary of Infauna and Total Benthos Indices TI Pool
- 5-4 Relative Percent Abundance of Macroinvertebrates Lower Hudson River
- 5-5 Summary of Diversity Indices and Abundance Data Lower Hudson River
- 5-6 Ratio of Observed Sediment Concentrations to Guidelines
- 5-7 Ratio of Predicted Sediment Concentrations to Sediment Guidelines
- 5-8 Ratio of Measured Whole Water Concentrations to Benchmarks
- 5-9 Ratio of Predicted Whole Water Concentrations to Criteria and Benchmarks
- 5-10 Ratio of Measured Forage Fish Concentrations to Toxicity Benchmarks
- 5-11a Ratio of Predicted Pumpkinseed Concentrations to Laboratory-Based NOAEL for Tri+ PCBs Upper River
- 5-11b Ratio of Predicted Pumpkinseed Concentrations to Laboratory-Based NOAEL for Tri+ PCBs Lower River
- 5-12a Ratio of Predicted Pumpkinseed Concentrations to Laboratory-Based LOAEL for Tri+ PCBs Upper River

XİX TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 5-12b Ratio of Predicted Pumpkinseed Concentrations to Laboratory-Based LOAEL for Tri+ PCBs Lower River
- 5-13a Ratio of Predicted Spottail Shiner Concentrations to Field-Derived NOAEL for Tri+ PCBs Upper River
- 5-13b Ratio of Predicted Spottail Shiner Concentrations to Field -Derived NOAEL for Tri+ PCBs Lower River
- 5-14a Ratio of Predicted Spottail Shiner Concentrations to Field-Derived LOAEL for Tri+ PCBs- Upper River
- 5-14b Ratio of Predicted Spottail Shiner Concentrations to Field-Derived LOAEL for Tri+ PCBs Lower River
- 5-15a Ratio of Predicted Pumpkinseed Concentrations to Laboratory-Derived NOAEL on a TEQ Basis Upper River
- 5-15b Ratio of Predicted Pumpkinseed Concentrations to Laboratory-Derived NOAEL on a TEQ Basis Lower River
- 5-16a Ratio of Predicted Spottail Shiner Concentrations to Laboratory-Derived NOAEL on a TEQ Basis Upper River
- 5-16b Ratio of Predicted Spottail Shiner Concentrations to Laboratory-Derived NOAEL on a TEQ Basis Lower River
- 5-17a Ratio of Predicted Brown Bullhead Concentrations to Laboratory-Derived NOAEL For Tri+ PCBs Upper River
- 5-17b Ratio of Predicted Brown Bullhead Concentrations to Laboratory-Derived NOAEL For Tri+ PCBs Lower River
- 5-18a Ratio of Predicted Brown Bullhead Concentrations to Laboratory-Derived LOAEL For Tri+ PCBs Upper River
- 5-18b Ratio of Predicted Brown Bullhead Concentrations to Laboratory-Derived LOAEL For Tri+ PCBs Lower River
- 5-19a Ratio of Predicted Brown Bullhead Concentrations to Laboratory-Derived NOAEL on a TEQ Basis Upper River
- 5-19b Ratio of Predicted Brown Bullhead Concentrations to Laboratory-Derived NOAEL on a TEQ Basis Upper River
- 5-20 Ratio of Observed Largemouth Bass and Brown Bullhead Concentrations to Toxicity Benchmarks Using NYSDEC Dataset
- 5-21 Ratio of Observed White Perch and Yellow Perch Concentrations to Toxicity Benchmarks Using NYSDEC Dataset
- 5-22 Ratio of Predicted White Perch Concentrations to Field-Based NOAEL for Tri+ PCBs
- 5-23 Ratio of Predicted White Perch Concentrations to Laboratory-Derived LOAEL for Tri+ PCBs

XX TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 5-24a Ratio of Predicted Yellow Perch Concentrations to Laboratory-Derived NOAEL for Tri+ PCBs Upper River
- 5-24b Ratio of Predicted Yellow Perch Concentrations to Laboratory-Derived NOAEL for Tri+ PCBs Lower River
- 5-25a Ratio of Predicted Yellow Perch Concentrations to Laboratory-Derived LOAEL for Tri+ PCBs Upper River
- 5-25b Ratio of Predicted Yellow Perch Concentrations to Laboratory-Derived LOAEL for Tri+ PCBs Lower River
- 5-26 Ratio of Predicted White Perch Concentrations to Laboratory-Derived NOAEL on a TEQ Basis
- 5-27a Ratio of Predicted Yellow Perch Concentrations to Laboratory-Derived NOAEL on a TEQ Basis Upper River
- 5-27b Ratio of Predicted Yellow Perch Concentrations to Laboratory-Derived NOAEL on a TEQ Basis Lower River
- 5-28a Ratio of Predicted Largemouth Bass Concentrations to Laboratory-Derived NOAEL For Tri+PCBs Upper River
- 5-28b Ratio of Predicted Largemouth Bass Concentrations to Laboratory-Derived NOAEL For Tri+ PCBs Lower River
- 5-29a Ratio of Predicted Largemouth Bass Concentrations to Laboratory-Derived LOAEL For Tri+ PCBs - Upper River
- 5-29b Ratio of Predicted Largemouth Bass Concentrations to Laboratory-Derived LOAEL For Tri+ PCBs - Lower River
- 5-30a Ratio of Predicted Largemouth Bass Concentrations to Laboratory-Derived NOAEL on a TEQ Basis- Upper River
- 5-30b Ratio of Predicted Largemouth Bass Concentrations to Laboratory-Derived NOAEL on a TEQ Basis- Lower River
- 5-31 Comparison of Measured Striped Bass Concentrations to Toxicity Reference Values
- 5-31a Ratio Of Predicted Striped Bass Concentrations To Tri+ PCB-Based TRVs
- 5-31b Ratio Of Predicted Striped Bass Concentrations To TEQ-Based TRVs
- 5-32 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Tree Swallow for Tri+ Congeners
- 5-33 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Tree Swallow Based on the Sum of Tri+ Congeners for the Period 1993 -2018
- 5-34 Ratio of Modeled Egg Concentrations to Benchmarks for Female Tree Swallow Based on the Sum of Tri+ Congeners for the Period 1993 -2018
- 5-35 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Tree Swallow on TEQ Basis

XXİ TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 5-36 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Tree Swallow Using TEQ for the Period 1993 2018
- 5-37 Ratio of Modeled Egg Concentrations to Benchmarks Based on FISHRAND for Female Tree Swallow Using TEQ for the Period 1993 2018
- 5-38 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Mallard for Tri+ Congeners
- 5-39 Ratio of Modeled Dietary Dose to Benchmarks for Female Mallard Based on FISHRAND Results for the Tri+ Congeners
- 5-40 Ratio of Egg Concentrations to Benchmarks for Female Mallard Based on FISHRAND Results for the Tri+ Congeners
- 5-41 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks for Female Mallard Based on 1993 Data on a TEO Basis
- 5-42 Ratio of Modeled Dietary Dose to Benchmarks for Female Mallard for Period 1993 2018 on a TEQ Basis
- 5-43 Ratio of Modeled Egg Concentrations to Benchmarks for Female Mallard for Period 1993 2018 on a TEQ Basis
- 5-44 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Belted Kingfisher for Tri+ Congeners
- 5-45 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Great Blue Heron for Tri+ Congeners
- 5-46 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on the 1993 Data for Female Bald Eagle for Tri+ Congeners
- 5-47 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Belted Kingfisher Based on the Sum of Tri+ Congeners for the Period 1993 2018
- 5-48 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Great Blue Heron Based on the Sum of Tri+ Congeners for the Period 1993 2018
- 5-49 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Bald Eagle Based on the Sum of Tri+ Congeners for the Period 1993 2018
- 5-50 Ratio of Modeled Egg Concentrations to Benchmarks for Female Belted Kingfisher Based on the Sum of Tri+ Congeners for the Period 1993 2018
- 5-51 Ratio of Modeled Egg Concentrations to Benchmarks for Female Great Blue Heron Based on the Sum of Tri+ Congeners for the Period 1993 2018
- 5-52 Ratio of Modeled Egg Concentrations to Benchmarks for Female Bald Eagle Based on the Sum of Tri+ Congeners for the Period 1993 2018
- 5-53 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Belted Kingfisher on TEQ Basis

XXII TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 5-54 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Great Blue Heron on TEQ Basis
- 5-55 Ratio of Modeled Dietary Dose and Egg Concentrations to Benchmarks Based on 1993 Data for Female Bald Eagle on TEQ Basis
- 5-56 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Belted Kingfisher Using TEQ for the Period 1993 2018
- 5-57 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Great Blue Heron Using TEQ for the Period 1993 2018
- 5-58 Ratio of Modeled Dietary Dose to Benchmarks Based on FISHRAND for Female Bald Eagle Using TEQ for the Period 1993 2018
- 5-59 Ratio of Modeled Egg Concentrations to Benchmarks Based on FISHRAND for Female Belted Kingfisher Using TEQ for the Period 1993 2018
- 5-60 Ratio of Modeled Egg Concentrations to Benchmarks Based on FISHRAND for Female Great Blue Heron Using TEQ for the Period 1993 2018
- 5-61 Ratio of Modeled Egg Concentrations to Benchmarks Based on FISHRAND for Female Bald Eagle Using TEQ for the Period 1993 2018
- 5-62 Ratio of Modeled Dietary Doses to Benchmarks for Female Bats Based on 1993 Data for the Tri+ Congeners
- 5-63 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Bat for Tri+ Congeners for the Period 1993 2018
- 5-64 Ratio of Modeled Dietary Doses to Benchmarks for Female Bat Based on 1993 Data on a TEQ Basis
- 5-65 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Bat on a TEQ Basis for the Period 1993 2018
- 5-66 Ratio of Modeled Dietary Doses to Benchmarks for Female Raccoon Based on 1993 Data for the Tri+ Congeners
- 5-67 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Raccoon for Tri+ Congeners for the Period 1993 - 2018
- 5-68 Ratio of Modeled Dietary Doses to Benchmarks for Female Raccoon Based on 1993 Data on a TEO Basis
- 5-69 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Raccoon on a TEQ Basis for the Period 1993 2018
- 5-70 Ratio of Observed Mink and Otter PCB Concentrations to Benchmarks
- 5-71 Ratio of Modeled Dietary Doses to Benchmarks for Female Mink Based on 1993 Data for the Tri+ Congeners
- 5-72 Ratio of Modeled Dietary Doses to Benchmarks for Female Otter Based on 1993 Data for the Tri+ Congeners

XXIII TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

- 5-73 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Mink for Tri+ Congeners for the Period 1993 2018
- 5-74 Ratio of Modeled Dietary Dose to Toxicity Benchmarks for Female Otter for Tri+ Congeners for the Period 1993 2018
- 5-75 Ratio of Modeled Dietary Doses to Benchmarks for Female Mink Based on 1993 Data on a TEQ Basis
- 5-76 Ratio of Modeled Dietary Doses to Benchmarks for Female Otter Based on 1993 Data on a TEQ Basis
- 5-77 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Mink on a TEQ Basis for the Period 1993 2018
- 5-78 Ratio of Modeled Dietary Doses to Toxicity Benchmarks for Female Otter on a TEQ Basis for the Period 1993 2018
- 6-1 Sensitivity Analysis- Receptor Output
- 6-2 Ranges of Percent Contribution to Variance of Input Parameters
- 6-3 Rank Correlation Sensitivity Analysis Results (R²)

XXİV TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

LIST OF FIGURES

l - I	l H	ludson	River	Drainage	Basin	and	Site	Location	M	ap
-------	-----	--------	-------	----------	-------	-----	------	----------	---	----

- 1-2 Baseline Ecological Risk Assessment Upper Hudson River Sampling Stations
- 1-3 Baseline Ecological Risk Assessment Lower Hudson River Sampling Stations
- 1-4 Hudson River ERA Data Sources
- 1-5 Eight-Step Ecological Risk Assessment Process for Superfund Hudson River PCB Reassessment Ecological Risk Assessment
- 2-1 Hudson River PCB Reassessment Conceptual Model Diagram Including Floodplain Soils
- 3-1 Revised Segments and Regions of the Farley Model for PCBs in Hudson River Estuary and Surrounding Waters
- 3-2 Average Wet Weight PCB Concentrations in Selected Fish Species Based on NYSDEC Data
- 3-3 Average Lipid-Normalized PCB Concentrations in Selected Fish Based on NYSDEC Data
- 3-4 Cumulative Distribution Functions of Exposure for Kingfisher and Eagle
- 3-5 Cumulative Distribution Functions of Exposure for Mink and Otter
- 3-6 Comparison of Congener Mass Fraction Between a Largemouth Bass Sample from RM 190 and Several Aroclor Standards
- 3-7 Comparison of Congener Mass Fraction Between a White Perch Sample from RM 26 and Several Aroclor Standards
- 3-8 Variation of Principal Component 1 with River Mile in Fish and Sediment
- 3-9 Variation of Principal Component 1 with River Mile in Fish and Sediment River Miles 150 to 80
- 3-10 Relationship Between Molecular Weight and River Mile for 1993 Hudson River Samples
- 3-11 Principal Component Results for 1993 and 1995 Fish Samples by Life Stage (Based on 29 Congeners)
- 3-12 Comparison of Congener Mass Fraction in Hudson River Fish and Several Aroclor Standards: Linear Scale
- 3-13 Comparison of Congener Mass Fraction in Hudson River Fish and Several Aroclor Standards: Semilogarithmic
- 4-1 Shape of Biphenyl and Substitution Sites
- 4-2 Dose Response Functions for Pheasant and Mink

XXV TAMS/MCA

CONTENTS

Volume 2E (Book 2 of 2)

5-1	Complete Linkage Clustering - TI Pool					
5-2	Relative Percent Grain Size Classes - TI Pool					
5-3	Mean Sediment TOC - TI Pool					
5-4	Mean Total PCB Concentrations in Sediment - TI Pool					
5-5	Biomass of Benthic Invertebrates - TI Pool					
5-6	Relative Percent Grain Size Classes - Lower Hudson River					
5-7	Mean Sediment TOC - Lower Hudson River					
5-8	Mean Total PCB Concentration in Sediment - Lower Hudson River					
5-9	Cumulative Risk Functions for the Belted Kingfisher and Bald Eagle					
5-10	Cumulative Risk Functions for the Mink and River Otter					
6-1	Predicted Toxicity Quotients from Uncertainty Analysis for the Kingfisher and Kingfisher Egg					
6-2	Predicted Toxicity Quotients from Uncertainty Analysis for Eagle and Eagle Egg					
6-3	Predicted Toxicity Quotients from Uncertainty Analysis for Mink and River Otter					

LIST OF PLATES

Plate 1 Habitat Map
Plate 2 Water-Column Sampling Locations in Hudson River

XXVİ TAMS/MCA

Figure 1-4 Hudson River ERA Data Sources

Figure 1-5
Eight-Step Ecological Risk Assessment Process for Superfund
Hudson River PCB Reassessment
Ecological Risk Assessment

Figure 2-1
Hudson River PCB Reassessment
Conceptual Model Diagram Including Floodplain Soils

Source: Farley et al., 1999

Note: Model segment numbers 1-30 pertain to the Fate and transport model. Model segments are combined into five food web regions for the bioaccumulation model calculations

Figure 3-1
Revised Segments and Regions of the Farley Model for PCBs in Hudson River Estuary and Surrounding Waters

FIGURE 3-2: AVERAGE WET WEIGHT PCB CONCENTRATIONS IN SELECTED FISH SPECIES BASED ON NYSDEC DATA

FIGURE 3-3: AVERAGE LIPID-NORMALIZED PCB CONCENTRATIONS IN SELECTED FISH SPECIES BASED ON NYSDEC DATA

1986

1987

1988

1989

1990

Year

1991 1992 1993

Figure 3-4: Cumulative Distribution Functions of Exposure for Kingfisher and Eagle

Figure 3-5: Cumulative Distribution Functions of Exposure for Mink and Otter

Figure 3-6
Comparison of Congener Mass Fraction Between a Large
Mouth Bass Sample from RM 190 and Several Aroclor Standards

Figure 3-7 Comparisons of Congener Mass Fraction Between a White Perch Sample from RM 26 and Several Aroclor Standards

Figure 3-8
Variation of Principal Component 1 with River Mile in Fish and Sediment

Figure 3-9
Variation of Principal Component 1 with River Mile in Fish and
Sediment River Miles 150 to 80

Figure 3-10 Comparison Between Molecular Weight and River Mile for 1993 Hudson River Samples

Figure 3-11
Principal Component Results for 1993 and 1995
Fish Samples by Life Stage
(Based on 29 Congeners)

Figure 3-12 Comparison of Congener Mass Fraction in Hudson River Fish and Several Aroclor Standards: Linear Scale

Figure 3-13
Comparison of Congener Mass Fraction in Hudson River Fish and Several Aroclor Standards: Semilogarithmic Scale

Figure 4-1: Shape of Biphenyl and Substitution Sites

FIGURE 4-2: Dose Response Functions for Pheasant and Mink

14 June 1999 TAMS/MCA

Figure 5-1 Complete Linkage Clustering - TI Pool

Figure 5-2
Relative Percent Grain Size Classes - TI Pool

Figure 5-3
Mean Sediment TOC - TI Pool

Figure 5-4 Mean Total PCB Concentration in Sediment - TI Pool

Figure 5-5
Biomass of Benthic Invertebrates - TI Pool

Figure 5-6
Relative Percent Grain Size Classes - Lower Hudson River

Figure 5-7 Mean Sediment TOC - Lower Hudson River

Figure 5-8
Mean Total PCB Concentration in Sediment - Lower Hudson River

Figure 5-9: Cumulative Risk Functions for the Belted Kingfisher and Bald Eagle

Figure 5-10: Cumulative Risk Functions for Mink and River Otter

FIGURE 6-1: Predicted Toxicity Quotients from Uncertainty Analysis for Kingfisher and Kingfisher Egg

FIGURE 6-2: Predicted Toxicity Quotients from Uncertainty Analysis for Eagle and Eagle Egg

FIGURE 6-3: Predicted Toxicity Quotients from Uncertainty Analysis for Mink and Otter

